
1

 Sisoft Technologies Pvt Ltd

SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

www.sisoft.in

http://www.sisoft.in/

• C++ uses the concept of stream & stream classes to implement its
I/O Operations with the console and disk files.

WHAT IS STREAM:

 A stream is sequence of bytes. It is an interface between program
and device.

 It acts either as a source from which the input data can be obtained
or as a destination to which the output data can be sent.

 The source stream that provides data to the program is called Input
Stream and the designation stream that receives output from the
program is called Output Stream.

 In other words, a program extracts the bytes from an input stream &
inserts bytes into an output stream

2 www.sisoft.in

INPUT
DEVICE

INSERTION
INTO
OUTPUT
STREAM

EXTRACTION
FROM INPUT
STREAM

PROGRAM

OUTPUT
DEVICE

INPUT
STREAM

OUTPUT
STREAM

This diagram shows that the data can come from the keyboard or any other
storage device. Similarly the data in the output stream can go to the screen or
any other storage device.

3 www.sisoft.in

C++ Stream Classes

www.sisoft.in 4

C++ contains a hierarchy of classes that are used to define various streams
to deal with the both console and disk files. These classes are called stream
classes.

See the below Diagram:

ios

Ostream_withassign

iostream

ostream streambuf

Iostream_withassign

istream

Istream_withassign

INPUT POINTER OUTPUT

5 www.sisoft.in

 Here Diagram shows that :

 1) ios is the base class for istream (input stream) and ostream (output
stream) which are again base classes for iostream(input/output stream).

 2) The class ios declared as the virtual base class so that only one
 copy of its member are inherited by the iostream.

 3) The class ios provides the basic support for formatted and
 unformatted I/O operations.

 4) The class iostream provides the facilities for handling both
 input and output streams.

 5) Three classes, namely istream_with_assign, ostream_withassign
 and iostream_withassign add assignment operators to these
classes.

6 www.sisoft.in

Table of stream classes for console operations

7 www.sisoft.in

Class Function

Istream Getline(), read()

Ostream Put(), write()

Iostream All functions of istream &
ostream.

Unformatted Console I/O Operations

www.sisoft.in 8

 Unformatted Input/Output is the most basic form of input/output.

 It is the simplest and most efficient form of input/output. It is usually
the most compact way to store data. Unformatted input/output
transfers the internal binary representation of the data directly between
memory and the file.

Advantages and Disadvantages of Unformatted I/O

 1) Unformatted input/output is the least portable form of input/output.
Unformatted data files can only be moved easily to and from computers
when share the same internal data representation.

 2) Unformatted input/output is not directly human readable, so you
cannot type it out on a terminal screen or edit it with a text editor.

9 www.sisoft.in

Portable Unformatted Input/Output :

 Normally, unformatted input/output is not portable between different
machine architectures because of differences in the way various
machines represent binary data.

 However, it is possible to produce binary files that are portable by
specifying the XDR keyword with the OPEN procedures. XDR (for
eXternal Data Representation) is a scheme under which all binary data is
written using a standard "canonical" representation. All machines
supporting XDR understand this standard representation and have the
ability to convert between it and their own internal representation.

10 www.sisoft.in

The following functions performed unformatted I/O Operations.

 1) Overloaded Operators >> and <<

 2) put() and get() function

 3) getline() and write() function

11 www.sisoft.in

Formatted Console I/O Operations

www.sisoft.in 12

 Formatted input/output is very portable Formatted input reads
characters from the input file and converts them to internal form.
Formatted I/O can be either "Free" format or "Explicit" format.

 Free Format I/O :

 With free format input/output, IDL uses default rules to format the
data. Free format is extremely simple and easy to use. It provides the
ability to handle the majority of formatted input/output needs with a
minimum of effort.

 Explicit Format I/O :

 Explicit format I/O allows you to specify the exact format for input /
output.

13 www.sisoft.in

Advantages of Formatted I/O :

 Formatted input/output operation is a simple process to move
formatted data files to various computers, even computers running
different operating systems, as long as they all use the ASCII character
set. (ASCII is the American Standard Code for Information Interchange. It
is the character set used by almost all current computers, with the
notable exception of large IBM mainframes.) Formatted files are human
readable and can be typed to the terminal screen or edited with a text
editor.

Disadvantages of Formatted I/O :

 Formatted input/output is more computationally expensive than
unformatted input/output because of the need to convert between
internal binary data and ASCII text. Formatted data requires more space
than unformatted to represent the same information.

14 www.sisoft.in

 C++ supports a number of features that could be used for formatting the
output. These features are:

 1) ios class functions & flags

 2) Manipulators

 3) User-Defined output functions

15 www.sisoft.in

ios class function & flags

www.sisoft.in 16

The ios class contains a large number of member functions that help user
to format the output in a number of ways. Here the table is:

List of IOS Format Functions:

17 www.sisoft.in

Functions Task

1. Width() To specify required field size
for displaying output value

2. Precision() To specify no of digits after
decimal point of a float value

3. Fill() To fill unused portion of a
field.

4. Setf() To specify format flags that
can control the form of output
display(i.e. left justified and
right justified).

5. Unsetf() To clear the flags specified.

width()

 The default width of output will be just enough space to print the
number, character, or string in the output buffer.

 But user can change this by using width() function. Which is invoked
with cout object.

 It only changes the width of the very next output field and then
immediately reverts to the default.

Syntax: cout . width(w);

Here w is the field width(number of columns).

www.sisoft.in 18

Program:
int main()

{

 cout.width(5);

Cout<< First Output \n”;

 cout<<543<<12<<“\n”;

Cout<< Second Output \n”;

Cout.width(5);

Cout<<543;

Cout.width(5);

Cout<<12<<“\n”;

 }

www.sisoft.in 19

Output:

First Output:
_ _ 54312
Second Output:
_ _ 543 _ _ _12

precision()

 By default, the floating numbers are printed with six digits after the
decimal point. If user want numbers print after the decimal point
according to his needs, he can do this with the help of precision().

 precision() retains its setting until the reset. That’s why user declared
only one time in his program.

Syntax: cout . Precision(d);

Here d is the number of digits to the right of the decimal point.

www.sisoft.in 20

Program:
int main()

{

 cout.precision(3);

cout<<sqrt(2)<<“\n”;

cout<<3.14159<<“\n”;

cout<<2.50032;

getch();

}

www.sisoft.in 21

Output:

1.141
3.142
2.5

Filling and padding : fill()

 We can print the value using much larger field widths than rquired by
the value. By default, unused positions of the field are filled with white
spaces. To fill the unused positions by any desired character , use fill()
function.

Like precision(), fill() stay in effect till we change it.

Syntax: cout . fill(ch);

Here ch represent the character which is used for filling the unused
positions.

www.sisoft.in 22

Program:
int main()

{

cout.fill(“#”);

 cout.width(5);

cout<< first output \n”;

 cout<<543<<12<<“\n”;

cout<< second output \n”;

cout.fill(“#”);

cout.width(5);

cout<<543;

cout.width(3);

cout<<12<<“\n”;

 }

www.sisoft.in 23

Output:

First Output:
54312
Second Output:
543 ###12

Formatting Flags, Bit Fields and setf()

 We have seen that when the function width() is used, the value (i.e. text
or number) is printed right-justified in the field width created.

If we want to print the text or number left-justified or print the floating
number in scientific notation we can use setf () function.

setf () - (setf stands for set flags).

Syntax: cout . setf (arg1, arg2);

Here arg1 is one of the formatting flags defined in the class ios.

And arg2 represent the bit field which specifies the group to which hthe
formatting flags belongs.

The formatting flag specifies the format action required for the output.

www.sisoft.in 24

Flags & bit fields for setf() function:

www.sisoft.in 25

Format Required Flag(arg1) Bit-field(arg2)

Left-justified Ios:: left Ios::adjustfield

Right-justified Ios::right Ios::adjustfield

Padding after sign
or base indicator

Ios::internal Ios::adjustfield

Scientific Notation Ios::scientific Ios::floatfield

Fixed Point
Notation

Ios:: fixed Ios::floatfield

Decimal Base Ios::dec Ios::basefield

Octal Base Ios::oct Ios::basefield

Hexadecimal Base Ios::hex Ios::basefield

Example:

int main()

 {

 cout.setf(std::ios::left, std::ios::adjustfield);

cout << setfill('^') << setw(10) << "Hello" << "\n";

 cout.setf(std::ios::right, std::ios::adjustfield);

 cout << setfill('0') << setw(10) << "99\n";

 return 0;

 }

www.sisoft.in 26

Output:

Hello^^^^^
000000099

Manipulators in C++

www.sisoft.in 27

The header file iomanip provides a set of functions called manipulators
which can be used to manipulate the output formats.

They provides the same features as that of the ios member functions and
flags.

Some manipulators are more convenient to use tan their counterparts in
the class ios.

Ex: cout<< manip1<<manip2<<mani3<<item1;

This kind of concatenation is useful when we want to display several
columns of output.

www.sisoft.in 28

manipulator meaning equivalent

setw(int w) set the feld width to w width()

setprecision(int d) set the floating point
precision to d

precision()

setfill(int c) set the fill character to c fill()

setiosflags(long f) set the format flag f setf()

resetiosflags(long f) clear the flag specified by f unsetf()

endl insert new line and flush
stream

“\n”

www.sisoft.in 29

Example:

int main()

 {

 cout.setf(std::ios::left, std::ios::adjustfield);

cout << setfill('^') << setw(10) << "Hello" << "\n";

 cout.setf(std::ios::right, std::ios::adjustfield);

 cout << setfill('0') << setw(10) << "99\n";

 return 0;

 }

www.sisoft.in 30

Output:

Hello^^^^^
000000099

User-Defined Manipulators

www.sisoft.in 31

User can design oen manipulators for certain purposes.

The general form for creating a manipulators without any argument is

Ostream & manipulator (ostream & output)

{

……..

…….. // Code

……..

Return output;

}

Here, manipulator is the name of manipulator which user wants.

www.sisoft.in 32

Example:

#include < iostream.h>
#include < iomanip.h>

ostream&curr(ostream&ostrObj)
{
cout << fixed << setprecision(2);
cout << "Rs.";
return ostrObj;
}

void main()
{
floatamt = 10.5478;
cout << curr << amt;
}

www.sisoft.in 33

Output:

Rs. 10.54

